
Journal of Global Optimization 24: 417–436, 2002.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

417

An Algorithm for Global Optimization using the
Taylor–Bernstein Form as Inclusion Function

P.S.V. NATARAY1 and K. KOTECHA2

1Systems and Control Engineering Group, EE Department, IIT Bombay 400076, India (e-mail:
nataraj@ee.iitb.ernet.in)
2Department of IT, GH Patel College of Engineering and Technology, Vallabh Vidyanagar, 388120,
Gujarat, India (e-mail: kk@gcet.ac.in)

Abstract. We investigate the use of higher order inclusion functions in the Moore–Skelboe (MS)
algorithm of interval analysis (IA) for unconstrained global optimization. We first propose an im-
provement of the Taylor–Bernstein (TB) form given in (Lin and Rokne (1996) 101) which has
the property of higher order convergence. We make the improvement so that the TB form is more
effective in practice. We then use the improved TB form as an inclusion function in a prototype MS
algorithm and also modify the cut-off test and termination condition in the algorithm. We test and
compare on several examples the performances of the proposed algorithm, the MS algorithm, and the
MS algorithm with the Taylor model of Berz and Hoffstatter (1998; 97) as inclusion function. The
results of these (preliminary) tests indicate that the proposed algorithm with the improved TB form
as inclusion function is quite effective for low to medium dimension problems studied.

Key words: Bernstein polynomials, Global optimization, Interval analysis

1. Introduction

Let � be the set of reals, X ⊆ �l be a right parallelepiped parallel to the axes (also
called as a box), and f : X→ � be a m+ 1 times differentiable function for some
positive integer m. Let f̄ (X) denote the set of all values of f on X. We seek global
optimization algorithms that are able to efficiently determine arbitrarily good lower
bounds for the minimum of f̄ (X).

Many algorithms based on interval analysis (IA) are available to solve this
global optimization problem, see for example, [9, 12, 24] and the references cited
therein. IA methods are usually based on branch and bound techniques, that is, they
start from the initial box X , subdivide X and store the subboxes in a list, discarding
subboxes which are guaranteed not to contain a global minimizer until the desired
accuracy in terms of the width of the intervals in the list is achieved. A basic
branch and bound algorithm of IA is the so-called Moore–Skelboe (MS) algorithm
[24]. Although the MS algorithm is reliable, it is somewhat slow to converge in
‘difficult’ problems, when inclusion functions of first and sometimes even second
orders are used (inclusion functions are defined in Section 2.2 below). Faster con-
vergence could possibly be obtained with higher order inclusion functions, and it

418 P.S.V. NATARAY AND K. KOTECHA

is of interest in this work to investigate their effectiveness in some such ‘difficult’
problems.

Our proposed algorithm for global optimization uses Bernstein polynomials for
bounding the range of the polynomial obtained from the Taylor form of the object-
ive function f . The Bernstein form has proven to be useful in bounding ranges of
multivariate polynomials over given domains, see for example, the works of Garloff
et al. [5, 6, 25]. We therefore combine the Bernstein algorithm with the Taylor form
and use the resulting so-called Taylor–Bernstein form [14] as an inclusion function
form of f in the MS algorithm. The Taylor–Bernstein form is an inclusion function
form exhibiting high order convergence, and we therefore expect to obtain faster
convergence with this form. The Taylor–Bernstein form also allows us to make
the cut-off test and termination condition more effective, and we incorporate these
modifications in the proposed algorithm.

The rest of this paper is organized as follows. In Section 2, we give the essen-
tials of the Bernstein form, Taylor form, and the Taylor–Bernstein form [14]. In
Section 3, we present a new more effective Taylor–Bernstein form. In Section 4,
we propose our algorithm for global optimization, with the new Taylor–Bernstein
form as an inclusion function and modified cut-off test and termination condition.
We can also have the Taylor model of Berz et al. as an inclusion function form in
the MSalgorithm as done, for instance, in the preliminary work in [13]. We call
such an algorithm as Algorithm TMS below. In Section 5, we test and compare the
performance of the proposed algorithm with that of Algorithms TMS and MS on
six ‘difficult’ examples. The concluding remarks of this work are given in Section
6.

2. Bernstein, Taylor, and Taylor–Bernstein forms

2.1. THE BERNSTEIN FORM

The Bernstein algorithm has established itself as an important tool for finding
bounds on the range of multivariate polynomials, see, for instance, [7, 25] and the
references cited therein. The salient features of the Bernstein polynomial approach
are:
1. The computation of the bounds conveys the information about the sharpness of

these bounds.
2. The approach avoids functional evaluations which might be costly if the degree

of the polynomial is high.
3. When bisecting a box and applying the Bernstein form to one of the two sub-

boxes to get an enclosure for the range over this subbox, we obtain without any
extra cost an enclosure for the range over the other subbox.

4. For sufficiently small boxes the Bernstein form gives the exact range.

GLOBAL OPTIMIZATION USING SUPER-CONVERGENT INCLUSION FUNCTIONS 419

2.1.1. Notation and definitions

In this sub-section, we follow the presentation in [7]. Let l be the number of
variables and x = (x1, . . . , xl) ∈ �l. A multi-index I is an ordered l-tuple of
non-negative integers I = (i1, . . . , il). For two given multi-indices I,N we write
I � N if 0 � ik � nk, k = 1, . . . , l. With I = (i1, . . . , ir−1, ir , ir+1, . . . , il)

we associate index Ir,k given by Ir,k = (i1, . . . , ir−1, ir + k, ir+1, . . . , il) where
0 � ir + k � nr . Also, we write

(
N

I

)
for

(
n1
i1

)
. . .

(
nl
il

)
.

We can expand a given multivariate polynomial into Bernstein polynomials to
obtain bounds for its range over an l-dimensional box X. Without loss of generality,
consider the unit box U = [0, 1]l since any nonempty box X of �l can be mapped
affinely onto this box.

Let p (x) be a multivariate polynomial in l variables with real coefficients.
Denote by N = (n1, . . . , nl) the tuple of maximum degrees so that nk is the
maximum degree of xk in p (x) for k = 1, . . . , l. Denote by S = {I : I � N}
the set containing all the tuples from �l which are ‘smaller than or equal’ to the
tuple N of maximum degrees. Then, we can write an arbitrary l-variate polynomial
p in the form

p (x) =
∑
I∈S

aIxI , x ∈ �l (2.1)

where for x = (x1, . . . , xl) ∈ �l we set xI = x
i1
1 x

i2
2 . . . x

il
l , where aI ∈ �

represents the corresponding coefficient to each xI ∈ �. We refer to N as the
degree of p. The I th Bernstein polynomial of degree N is defined as

BN
I (x) = B

n1
i1

(x1) . . . B
nl
il
(xl) x ∈ �l

where, for ij = 0, . . . , nj , j = 1, . . . , l

B
nj
ij

(
xj

) = (
nj

ij

)
x
ij
j

(
1− xj

)nj−ij
The Bernstein coefficients bI (U) of p over the unit box U are given by

bI (U) =
∑
J�I

(
I

J

)(
N

J

)aJ , I ∈ S

Thus, the Bernstein form of a multivariate polynomial p is defined by

p (x) =
∑
I∈S

bI (U) BN
I (x)

The Bernstein coefficients are collected in an array B (U) = (bI (U))I∈S , called
a patch. Based on the above, we can have an algorithm for finding a patch of
Bernstein coefficients.

420 P.S.V. NATARAY AND K. KOTECHA

ALGORITHM PATCH: B (U) =Patch(X, aI)

Inputs: A box X, a polynomial p as in (2.1) of degree N in l-variables with coeffi-
cients aI .

Outputs: A patch B (U) of Bernstein coefficients of p on U.
BEGIN Algorithm
1. Transform the polynomial p (with coefficients aI) on X to a polynomial on U.

Denote the coefficients of the latter as a′I .

2. Find the Bernstein coefficients of p on U as

bI (U) =
∑
J�I

(
I

J

)(
N

J

)a′J , I ∈ S

3. Return the patch B (U) = (bI (U))I∈S .
END Algorithm

The following result describes the range enclosure property of the Bernstein
coefficients.

LEMMA 2.1. [3]: Let p be a polynomial of degree N. Then, the following prop-
erty holds for a patch B (U) of Bernstein coefficients :

p̄ (X) ⊆ [minB (U) ,maxB (U)]

We can find an enclosure of the range of the multivariate polynomial p on X
by transforming the polynomial into Bernstein form. Then, by Lemma 2.1, the
coefficients of the expansion in the Bernstein form provide lower and upper bounds
for the range.

2.1.2. Bernstein subdivision process

The obtained range enclosure can be further improved either by degree elevation of
the Bernstein polynomial or by subdivision. The subdivision strategy is generally
more efficient than the degree elevation strategy [5] and is therefore preferred.

Let D be any subbox of U generated by bisection, and suppose the patch B (D)

has been already computed. Further suppose D is bisected along the r-th com-
ponent direction (1 � r � l) to produce two further subboxes DA and DB given
by

DA =
[
d1, d̄1

]× . . .× [
dr,m (dr)

]× . . .× [
dl, d̄l

]
DB =

[
d1, d̄1

]× . . .× [
m(dr) , d̄r

]× . . .× [
dl, d̄l

]
Then, the patches B (DA) and B (DB) can be obtained from B (D) by executing the
following algorithm.

ALGORITHM SUBDIVISION: [B (DA) , B (DB) ,DA,DB] = SD(D, B (D) , r)

GLOBAL OPTIMIZATION USING SUPER-CONVERGENT INCLUSION FUNCTIONS 421

Inputs: The box D ⊆ U, its patch B (D), and a component direction r (1 � r � l)

in which D is to be bisected.
Outputs: Subboxes DA and DB , with respective patches B (DA) and B (DB)

BEGIN Algorithm
1. Bisect D along the r-th component direction to produce the two subboxes DA

and DB .
2. Compute patch B (DA) as follows.

(a) Set : B(0) (D)← B (D)

(b) FOR k = 1, . . . , nr DO

b
(k)
I (D) =

{
b
(k−1)
I (D) : ir < k

1
2

{
b
(k−1)
Ir,−1

(D) + b
(k−1)
I (D)

}
: ir � k

To obtain the new coefficients, we apply formula given above for ij =
0, . . . , nj , j = 1, . . . , r − 1, r + 1, . . . , l.

(c) Set : B (DA)← B(nr) (D)

3. Find patch B (DB) from intermediate values in above step, as follows
(a) FOR k = 0 to nr DO

bi1,... ,nr−k,... ,il (DB) = b
(k)

i1,... ,nr ,... ,il
(D)

(b) Set : B (DB)← (bI (DB))I∈S
4. RETURN DA , DB , B (DA) and B (DB)

END Algorithm

The following result gives a condition called vertex condition, which can be used
to verify if the range enclosure given by the Bernstein coefficients is exact.

LEMMA 2.2. [3] : Let p be a polynomial of degree N . Let B (U) be a patch on
U. Then,

{p̄ (U) = [minB (U) ,maxB (U)]}
⇔ minB (U) resp. maxB (U) occurs at some I ∈ S0

where, S0 is a special subset of the index set S defined by

S0 = {0, n1} × . . .× {0, nl}
The above vertex condition also holds for any subbox D ⊆ U, see [17]. Com-

bining the tool of Bernstein subdivision and the vertex condition, we can repeatedly
improve the bounds till they are exact, i.e., till the vertex condition is satisfied on
every subdivision. This leads to the following algorithm for computing exactly the
range of p on X.

422 P.S.V. NATARAY AND K. KOTECHA

ALGORITHM BERNSTEIN POLYNOMIAL BOUNDER : p̄ (X) = Bounder(X, aI)

Inputs: A box X, a polynomial p as in (2.1) of degree N in l-variables and having
coefficients aI .

Outputs: The exact range p̄ (X).
BEGIN Algorithm
1. (Compute patch B (U)) Execute Algorithm Patch

B (U) = Patch (X, aI)

2. (Initialize lists) Set L← {(U, B (U))} , Lsol ← {}.
3. (Select item for processing) If L is empty, go to step 7. Otherwise, pick the first

item from L, denote it as (D, B (D)), and delete the item entry from L.
4. (Check vertex condition on patch) If (D, B (D)) satisfies the vertex condition in

Lemma 2.2, that is, if minB (D) resp. maxB (D) occurs at some I ∈ S0, enter
the item in list Lsol and return to previous step.

5. (Subdivide and find new patches) Execute Algorithm Subdivision

[B (DA) , B (DB) ,DA,DB] = SD (D, B (D) , r)

where, r is chosen to vary cyclically� from 1 to l.
6. (Add new entries to list) Enter the new items (DA,B (DA)) and (DB, B (DB)) at

end of list L, and return to step 3.
7. (Compute exact polynomial range) Compute the exact range p̄ (X) as the min-

imum to maximum over all the second entries of the items present in list Lsol.
8. RETURN p̄ (X) .

END Algorithm

2.2. THE TAYLOR FORM

In this subsection, we first introduce some further notation as in [23]. Let

λ = {λ1, . . . , λl} , |λ| = λ1 + ...+ λl, λ! = λ1! . . . λl!, Dλf (x)

= ∂λ1+...+λl f (x)

∂x
λ1
1 . . . ∂x

λl
l

(2.2)

Let I (X) be the set of all boxes contained in X. Let the width of an interval X be
defined as w (X) = max X−min X if X ∈ I (�) , and as w (X) = max {w (X1) , . . . ,

w (Xl)} , if X ∈ I
(�l

)
. Let the midpoint of an interval X be defined as m(X) =

(min X+max X) /2 if X ∈ I (�) , and as m(X) = {m(X1) , . . . , m (Xl)} , if
X ∈ I

(�l
)
. We call a function F : I (X)→ I (�) an inclusion function for f , if

� That is, r varies starting from 1 through l, and then again from 1 through l, and so on. Besides
cyclical, other strategies for subdivision exist, and their efficiency investigated in [6].

GLOBAL OPTIMIZATION USING SUPER-CONVERGENT INCLUSION FUNCTIONS 423

f̄ (Y) ⊆ F (Y) for all Y ∈ I (X). An inclusion function F for f is said to have
convergence order α, if w(F (Y))−w(f (Y)) � Lw(Y)α for all Y ∈ I (X) , where
L and α are positive constants.

Let f : X→ � be a function that is m+ 1 times differentiable on X. Then, the
Taylor expansion of f of order m is given as

f (x) = f (c)+
m∑
|λ|=1

Dλf (c)

λ! (x− c)λ

︸ ︷︷ ︸
p(x)

+
∑
|λ|=m+1

f (λ) (ξ)

λ! (x− c)m+1

︸ ︷︷ ︸
r(x)

, x ∈ X

(2.3)

where, c = m(X) and ξ ∈ X. We shall call p (x) the polynomial part and r (x) the
remainder part of the Taylor expansion.

Assume an inclusion function of (m+ 1)-th derivative of f exists and is boun-
ded, and furthermore that it has the isotonicity property [23]. Then, the correspond-
ing Taylor form of order m, denoted by FTaylor, can be expressed as [14]:

FTaylor (X) = p̄ (X)+ R (X) (2.4)

where p̄ (X) is the exact range of the polynomial part p (x) on X, and R (X) is any
inclusion for the range of the remainder part r (x) on X. Lin and Rokne [14] show
that the Taylor form has convergence order m+ 1.

THEOREM 2.3. [14] Assume that the Taylor form of order m is as defined above.
Then,

f (X) ⊆ FTaylor (X)

w(FTaylor (X))− w(f (X)) = O(w(X)m+1)
(2.5)

2.3. THE TAYLOR–BERNSTEIN FORM

The Taylor form provides an enclosure for the range of f over X with conver-
gence order m + 1. However, it requires the computation of the exact range of
a multivariate polynomial p̄ (X). Lin and Rokne [14] proposed an algorithm that
uses Bernstein form to find a (generally nonsharp) enclosure of p̄ (X), so that the
resulting combined form, which we shall call as the Taylor–Bernstein form, still
possesses the property of m+ 1 convergence order given by (2.5).

We give below the Lin and Rokne algorithm for finding an enclosure of the
range of f on X. Note that this algorithm uses the Taylor form of order m and
Bernstein polynomials of sufficiently high degree N ′ given by (2.7) below, and
that a generally nonsharp enclosure of the exact range of the polynomial part p of
Taylor expansion is computed and used.

424 P.S.V. NATARAY AND K. KOTECHA

ALGORITHM LR [14]: FLR (X) = LinRokne(X, f,m)

Inputs: The box X, an expression for the function f , and the order m of Taylor
form to be used.
Output: An enclosure FLR (X) of the range of f on X.
1. For the given function f , compute (Taylor) coefficients of p in (2.3) and also

the remainder interval R (X) . This may be done automatically on a computer
equipped with interval arithmetic using Moore’s recursive technique for Taylor
coefficients computation, see [18, 19].

2. Relate the obtained Taylor coefficients to those of the power form in (2.1), and
denote the coefficients in this form as aI .

3. Compute the l-tuple of indices D given by

D = (d1, . . . , dl) , where d1, . . . , dl �
[
1/w (X)

]m+1
(2.6)

and then the l-tuple of indices N ′ given by

N ′ = (
n′1, . . . , n

′
l

)
, where n′k = max {nk, dk} , k = 1, . . . , l (2.7)

and construct S ′ = {
I : I � N ′

}
.

4. Find a patch B (U) of Bernstein coefficients of p on U by executing Algorithm
Patch : B (U) =Patch(X, aI) with S ′ used in place of S in this Algorithm. Then,
compute an enclosure for the range of p̄ (X) as

B∗ = [minB (U) ,maxB (U)] (2.8)

5. Compute an enclosure for the range of f over X as

FLR (X) = B∗ + R (X) (2.9)

6. RETURN FLR (X) .

END Algorithm

Lin and Rokne [14] showed that the Taylor–Bernstein form computed in the above
algorithm retains the property of m + 1 convergence order shown by the Taylor
form:

THEOREM 2.4. [14] Let FLR (X) be as computed in Algorithm LR. Then,

f (X) ⊆ FLR (X)

w(FLR (X))− w(f (X)) = O(w(X)m+1)

3. Proposed Taylor–Bernstein form

As seen from (2.6), D becomes large quite quickly as w (X) becomes smaller,
leading to high degrees N ′ � N of the Bernstein polynomials in (2.7). As a

GLOBAL OPTIMIZATION USING SUPER-CONVERGENT INCLUSION FUNCTIONS 425

consequence, the Bernstein step of Algorithm LR becomes very computationally
intensive as the domain intervals shrink in widths.

We therefore propose an algorithm that uses a different Bernstein step based
on Bernstein polynomials of degree N (note that N is the minimum degree of
Bernstein polynomials we can possibly use) and is equipped with the tools of
subdivision and vertex condition checks.

We further propose to use in step 1 of our algorithm, the Taylor model tech-
nique of Berz and Hoffstatter [2, 15] for computing the Taylor coefficients in
parallel with the remainder interval. Berz et al. have shown that the Taylor model
technique is more computationally efficient and gives tighter results than a direct
implementation of Moore’s recursive techniques.

The algorithm proposed below computes an enclosure for the range of f on
X using the Taylor form of order m and Bernstein polynomials of degree N . We
emphasize that the exact range of polynomial part of Taylor expansion is computed
in this algorithm using Bernstein subdivision, and a vertex condition check is done
on every subdivision.

ALGORITHM TB: FTB (X) = T B (X, f,m)

Inputs: The box X, an expression for the function f , and the order m of Taylor
form to be used.
Output: An enclosure FTB (X) of the range of f on X.
1. For the given function f , compute Taylor coefficients of p in (2.3) in parallel

with the remainder interval R (X) using the Taylor model technique of Berz and
Hofstatter [2].

2. Relate the obtained Taylor coefficients to those of the power form in (2.1), and
denote the coefficients in this form as aI .

3. Find the exact range p̄ (X) on X using Algorithm Bernstein Polynomial Bounder
:

p̄ (X) = Bounder (X, aI) (3.10)

4. Using R (X) obtained in step 1 and p̄ (X) obtained in step 3, compute an enclos-
ure for the range of f over X as

FTB (X) = p̄ (X)+ R (X) (3.11)

5. RETURN FTB (X) .

END Algorithm

It is trivial to show that the Taylor–Bernstein form computed in the proposed
algorithm also has the property of m+ 1 convergence order :

THEOREM 3.1. Let FTB (X) be as computed in Algorithm TB. Then,

f (X) ⊆ FTB (X)

w(FTB (X))− w(f (X)) = O(w(X)m+1)

426 P.S.V. NATARAY AND K. KOTECHA

Proof. From (2.4) and (3.11), FTB is a Taylor form FTaylor. Now apply Theorem
2.3. �

4. Proposed Algorithm

We first outline the well-known MS algorithm of IA (the algorithm below is ac-
tually the MS algorithm augmented with the monotonicity test and the cut-off test
of Ichida and Fujii [11]. For convenience, we however refer to it as just the MS
algorithm).

MS ALGORITHM FOR GLOBAL OPTIMIZATION [24]
Inputs: The box X, inclusion functions F and F ′ (we use the natural interval ex-
tension, cf. [19]) for f : X → � and its Jacobian, respectively, and an accuracy
parameter ε.
Output: A lower bound of accuracy ε, on the global minimum of f over X (this
lower bound is output as the value of variable y in the last but one step below).
BEGIN Algorithm
1. Set Y = X.
2. Calculate F (Y) .

3. Set y = minF (Y).
4. Initialize the list L = ((Y, y)) and the cut-off value z = maxF (Y).
5. Choose a coordinate direction k parallel to which Y has an edge of maximum

length�, i.e., choose k as

k = {i : w (Y) = w (Yi)}

6. Bisect Y in direction k getting boxes V1 and V2 such that Y = V1 ⋃
V2.

7. Monotonicity test (cf. Remark 1): discard any box Vi if 0 /∈ F
′
j (V

i) for any
j ∈ {1, 2, ..., l} and i = 1, 2.

8. Calculate F
(
V1

)
and F

(
V2

)
.

9. Set vi = minF
(
Vi

)
for i = 1, 2.

10. Update the cut-off value z as

z = min
{
z,maxF

(
V1

)
,maxF

(
V2

)}
11. Remove (Y, y) from the list L.
12. Add the pairs

(
V1, v1

)
,
(
V2, v2

)
to the list L such that the second members of

all pairs of the list do not decrease.

� For other bisection strategies that have often been found more efficient, see, for instance, [4].
The same remark also holds for the bisection step in Algorithms TMS and TBMS described in the
sequel.

GLOBAL OPTIMIZATION USING SUPER-CONVERGENT INCLUSION FUNCTIONS 427

13. Cut-off test: discard from the list all pairs whose second members are greater
than z.

14. Denote the first pair of the list by (Y, y).
15. If the width of F (Y) is less than ε, then print y and EXIT algorithm.
16. Go to Step 5.
END Algorithm

The first pairs (Y, y) of the list generated by the Algorithm in each iteration are
called as the leading pairs, and the Y as the leading boxes.

REMARK 1. In the monotonicity test if 0 /∈ F
′
j (V

i) then the interior of Vi cannot
contain a global minimizer. The edge of Vi still can contain global minimizer if
that part of the edge which has the smallest function values is also part of the edge
of X. Otherwise, no global minimizer lies in Vi . For details, see [24].

4.1. ALGORITHM TMS

In this algorithm, we simply use the Taylor models of Berz et al. [2] as inclu-
sion functions in Algorithm MS. As this involves using Taylor models in Moore–
Skelboe algorithm, we call this as Algorithm TMS. Algorithm TMS is not new in
the literature, and has been proposed and investigated, for instance, in [13] (and
perhaps also by Berz et al.).

4.2. ALGORITHM TBMS

Consider a leading box Y in a given iteration of the MS algorithm, and apply
Algorithm TB for finding an enclosure of f (Y) using FTB (Y). From (3.11) and
Theorem 3.1,

f (Y) ⊆ FTB (Y) = p̄ (Y)+ R (Y)

= [
min p̄ (Y) ,max p̄ (Y)

]+ [minR (Y) ,maxR (Y)]

or

f (Y) ⊆ [
min p̄ (Y)+minR (Y) ,max p̄ (Y)+maxR (Y)

]
(4.12)

Since we obtain the exact range of p̄ (Y) in Algorithm TB, we can also construct
the so-called inner enclosure of f (Y) as[

min p̄ (Y)+maxR (Y) ,max p̄ (Y)+minR (Y)
] ⊆ f (Y) (4.13)

From (4.12) and (4.13),[
min p̄ (Y)+maxR (Y) ,max p̄ (Y)+minR (Y)

]
⊆ f (Y) ⊆ [

min p̄ (Y)+minR (Y) ,max p̄ (Y)+maxR (Y)
]

428 P.S.V. NATARAY AND K. KOTECHA

which implies

min p̄ (Y)+minR (Y) � min f (Y) � min p̄ (Y)+maxR (Y)

Therefore, with FTB as an inclusion function, we can redefine the cut-off level
in the MS algorithm as z = min p̄ (Y) + maxR (Y) which is obviously less and
hence more effective than the original cut-off level of maxF (Y) = max p̄ (Y) +
maxR (Y) . Further, the error on min f (Y) is seen from the above inequality to be
no greater than

{min p̄ (Y)+maxR (Y)} − {min p̄ (Y)+minR (Y)}
= maxR (Y)−minR (Y) = w (R (Y))

This means that using FTB, we can redefine the termination condition in MS al-
gorithm based on the width of R (Y) , which is smaller and hence more effective
than the original one based on w (F (Y)) = w (p̄ (Y))+ w (R (Y)).

Based on these ideas, in our second proposed algorithm we make the following
modifications to the MS algorithm (note that Y is the leading box in the current
iteration) :
1. The Taylor–Bernstein form FTB is used as an inclusion function of f . Using

this form, an enclosure of the range of f over a given box can be obtained using
Algorithm TB.

2. The cut-off value is now defined as z = min p̄ (Y) +maxR (Y) (cf. the earlier
z = maxF (Y)).

3. The termination criterion is modified, based on the width of the remainder inter-
val R (Y) (cf. the earlier criterion based on width of F (Y)).

Since this global optimization algorithm involves using Taylor–Bernstein form in
Moore-Skelboe algorithm, we call it as Algorithm TBMS.

ALGORITHM TBMS
Inputs: The box X, order m of the Taylor form to be used, an inclusion function
F ′ (we use the natural interval extension) for the Jacobian of f : X → �, and an
accuracy parameter ε.
Output: A lower bound of accuracy ε, on the global minimum of f over X (this
lower bound is output as the value of variable y in the last but one step below).
BEGIN Algorithm
1. Set Y = X.
2. Calculate FTB (Y) using Algorithm TB :

[
FTB (Y) , p̄ (Y) , R (Y)

]
= T B (Y, f,m)

3. Set y = minFTB (Y).
4. Initialize the list L = ((Y, y)) and the cut-off value z as

z = min p̄ (Y)+maxR (Y)

GLOBAL OPTIMIZATION USING SUPER-CONVERGENT INCLUSION FUNCTIONS 429

5. Choose a coordinate direction k parallel to which Y has an edge of maximum
length, i.e., choose k as

k = {i : w (Y) = w (Yi)}

6. Bisect Y in direction k getting boxes V1 and V2 such that Y = V1 ⋃
V2.

7. Monotonicity test (cf. Remark 1): discard any box Vi if 0 /∈ F
′
j (V

i) for any
j ∈ {1, 2, ..., l} and i = 1, 2.

8. Calculate FTB

(
V1

)
and FTB

(
V2

)
using Algorithm TB.

9. Set vi = minF
(
Vi

)
for i = 1, 2.

10. Update the cut-off value z as

z = min
{
z,min p̄

(
V1

)+maxR
(
V1

)
,min p̄

(
V2

)+maxR
(
V2

)}

11. Remove (Y, y) from the list L.
12. Add the pairs

(
V1, v1

)
,
(
V2, v2

)
to the list L such that the second members of

all pairs of the list do not decrease.
13. Cut-off test: discard from the list all pairs whose second members are greater

than z.
14. Denote the first pair of the list by (Y, y).
15. If the width of R (Y) is less than ε, then print y and EXIT algorithm.
16. Go to Step 5.
END Algorithm

The convergence properties of Algorithm TMS as well as that of Algorithm TBMS
follow immediately from the convergence results for inclusion functions of higher
order in the MS algorithm, as given by Moore and Ratschek in [20] and Ratschek
in [22].

5. Numerical Tests

We test and compare the performances of Algorithms TBMS, TMS, and MS on
some examples. We use two values of accuracy, ε = 10−03 and 10−05. We choose
the following measures for the tests: number of iterations, computational time,
space-complexity (maximum list length), and final list length. For all our computa-
tions, we use a PC/Pentium III 800 MHz 256 MB RAM machine with a FORTRAN
90 compiler, and version 8.1 of the COSY-INFINITY package of Berz et al. [1, 10].

430 P.S.V. NATARAY AND K. KOTECHA

EXAMPLE 1. Gritton’s second problem in Chemical Engineering [13]: The func-
tion is

f (x) =− 371.93625 − 791.2465656 ∗ x + 4044.944143 ∗ x2 + 978.1375167 ∗ x3

− 16547.8928 ∗ x4 + 22140.72827 ∗ x5 − 9326.549359 ∗ x6

− 3518.536872 ∗ x7 + 4782.532296 ∗ x8 − 1281.47944 ∗ x9

− 283.4435875 ∗ x10 + 202.6270915 ∗ x11 − 16.17913459 ∗ x12

− 8.88303902 ∗ x13 + 1.575580173 ∗ x14 + 0.1245990848 ∗ x15

− 0.03589148622 ∗ x16 − 0.0001951095576 ∗ x17

+ 0.0002274682229 ∗ x18

This is a unidimensional problem, with l = 1. We took the initial domain as
X = [1, 2]. Algorithm MS is unable to provide a solution, even after 1 hour, and is
therefore aborted. The performances of Algorithms TMS and TBMS are given in
the Table�.

TBMS TMS

Order, m Accuracy Iterations Time, s Max. LL Final LL Iterations Time, s Max. LL Final LL

2 10−03 50 0.41 37 1 58 0.32 47 2

10−05 52 0.43 37 1 64 0.34 47 1

4 10−03 7 0.08 6 1 18 0.14 8 2

10−05 9 0.11 6 1 24 0.18 8 1

6 10−03 3 0.06 2 1 17 0.17 7 2

10−05 4 0.06 2 1 23 0.21 7 1

8 10−03 2 0.04 2 1 17 0.20 7 2

10−05 3 0.06 2 1 23 0.26 7 1

Both Algorithms TMS and TBMS are able to find the global minimum fairly
quickly, as −0.11811...... It may be noted that Kearfott and Arazyan report in [13]
that the software GLOBSOL had some difficulty in tackling this problem.

EXAMPLE 2. Jennrich and Sampson function [21, problem 6]. The two dimen-
sional function is

f (x) =
10∑
i=1

fi(x)
2, fi(x) = 2+ 2i − (exp(ix1)+ exp(ix2))

We take the initial domain as X = ([−1, 1], [−1, 1]). The performances of the
various Algorithms are as under.

� In the Tables to follow, LL denotes list length. A star entry denotes that the algorithm has been
aborted due to the excessive computation time taken (greater than an hour).

GLOBAL OPTIMIZATION USING SUPER-CONVERGENT INCLUSION FUNCTIONS 431

TBMS TMS

Order, m Accuracy Iterations Time, s Max. LL Final LL Iterations Time, s Max. LL Final LL

2 10−03 136 1.75 18 3 354 1.56 32 23

10−05 141 2.00 18 2 432 2.00 32 24

4 10−03 62 1.20 14 1 349 3.11 32 23

10−05 65 1.45 14 1 427 3.95 32 24

6 10−03 53 1.66 14 1 349 6.24 32 23

10−05 55 1.81 14 1 427 7.84 32 24

8 10−03 29 1.66 10 1 349 11.35 32 23

10−05 31 1.83 10 1 427 14.12 32 24

MS

Accuracy Iterations Time, s Max. LL Final LL

10−03 1443 6.71 81 42

10−05 1961 10.20 81 37

The global minima is found in each case as 124.36218.....

EXAMPLE 3. Bard function [21, problem 8]. The three dimensional function is

f (x) =
15∑
i=1

fi(x)
2, fi(x) = yi −

(
x1 + ui

vix2 + wix3

)
,

ui = i, vi = 16− i, wi = min(ui, vi)

where,

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

yi 0.14 0.18 0.22 0.25 0.29 0.32 0.35 0.39 0.37 0.58 0.73 0.96 1.34 2.10 4.39

We take the initial domain as ([−0.25, 0.25], [0.01, 2.5], [0.01, 2.5]). The per-
formances of the various Algorithms are as under.

432 P.S.V. NATARAY AND K. KOTECHA

TBMS TMS

Order, m Accuracy Iterations Time, s Max. LL Final LL Iterations Time, s Max. LL Final LL

2 10−03 406 16.64 74 45 3145 76.13 822 772

10−05 520 32.13 74 7 ∗ > 3600 ∗ ∗

4 10−03 191 35.00 38 7 3124 86.13 818 772

10−05 202 60.65 38 1 ∗ > 3600 ∗ ∗

6 10−03 162 67.80 38 2 3123 122.81 818 772

10−05 165 90.22 38 1 ∗ > 3600

8 10−03 157 79.90 38 2 3122 181.05 818 772

10−05 159 92.03 38 1 ∗ > 3600 ∗ ∗

MS

Accuracy Iterations Time, s Max. LL Final LL

10−03 6122 466.56 1643 1622

10−05 ∗ > 3600 ∗ ∗

The global minima found using each of the algorithms is 8.21487....E − 03.

EXAMPLE 4. Multidimensional function of Makino and Berz [16, first example].
The function is

f (x) = 4 tan(3x2)

3x1 + x1

√
6x1

−7(x1−8)

− 120− 2x1 − 7x3(1+ 2x2)−

− sinh(0.5+ 6x2

8x2 + 7
)+ (3x2 + 13)2

3x3
− 20x3(2x3 − 5)

+ 5x1 tanh(0.9x3)√
5x2

− 20x2 sin(3x3)

This is a three-dimensional problem with l = 3. We took the initial domain as
given in the paper cited, i.e.,

X = ([1.95, 2.05], [0.95, 1.05], [0.95, 1.05])

Algorithm MS is unable to provide a solution even after 1 hour, and is aborted. The
performances of Algorithms TMS and TBMS are as below.

GLOBAL OPTIMIZATION USING SUPER-CONVERGENT INCLUSION FUNCTIONS 433

TBMS TMS

Order, m Accuracy Iterations Time, s Max. LL Final LL Iterations Time, s Max. LL Final LL

2 10−03 5 0.12 2 1 44 0.17 15 12

10−05 15 0.30 2 1 64 0.30 15 11

4 10−03 0 0.04 1 1 44 0.47 15 12

10−05 2 0.07 2 1 64 0.64 15 11

6 10−03 0 0.04 1 1 44 0.95 15 12

10−05 0 0.05 1 1 64 1.35 15 11

8 10−03 0 0.06 1 1 44 1.75 15 12

10−05 0 0.08 1 1 64 2.46 15 11

The global minimum is given in the above cited paper as −2.31166..... Algorithms
TMS and TBMS are able to find this global minimum successfully and quickly.

EXAMPLE 5. Brown and Dennis function [21, problem 16]. The function is

f (x) =
20∑
i=1

fi(x)
2, fi (x) = (x1 + tix2 − exp (ti))

2

+ (x3 + x4 sin (ti)− cos (ti))
2 , ti = i/5

This is a 4−dimensional problem. Following [8], we take the initial domain as
X = ([−10, 0,−100,−20], [100, 15, 0, 0.2]). Algorithm MS is unable to provide
a solution, even after 1 hour, and is aborted. The performances of Algorithms TMS
and TBMS are as under.

TBMS TMS

Order, m Accuracy Iterations Time, s Max. LL Final LL Iterations Time, s Max. LL Final LL

2 10−03 250 35.95 23 1 418 2.53 40 18

10−05 259 85.18 23 1 476 3.09 45 24

4 10−03 66 7.08 15 1 397 4.38 40 18

10−05 66 7.46 15 1 455 5.35 45 24

6 10−03 47 29.67 15 1 397 5.37 40 18

10−05 47 31.23 15 1 455 6.64 45 24

8 10−03 40 113.36 15 1 397 6.67 40 18

10−05 40 116.57 15 1 455 8.14 45 24

The global minimum is given in the above cited paper as 88860.47976.... Al-
gorithms TMS and TBMS are able to find this global minimum successfully and
fairly quickly, for m � 4.

434 P.S.V. NATARAY AND K. KOTECHA

EXAMPLE 6. Kowalik and Osborne function [21, problem 15]. The function is

f (x) =
11∑
i=1

fi(x)
2, fi(x) = yi − x1(u

2
i + uix2)

(u2
i + uix3 + x4)

where,

i 1 2 3 4 5 6 7 8 9 10 11

yi 0.1957 0.1947 0.1735 0.1600 0.0844 0.0627 0.0456 0.0342 0.0323 0.0235 0.0246

ui 4.0000 2.0000 1.0000 0.5000 0.2500 0.1670 0.1250 0.1000 0.0833 0.0714 0.0625

The global minima of this function over domain ([0.1, 0.2], [0.1, 0.2], [0.1, 0.2],
[0.1, 0.2]) is 1.02734E − 03. The performances of the various Algorithms are as
under.

TBMS TMS

Order, m Accuracy Iterations Time, s Max. LL Final LL Iterations Time, s Max. LL Final LL

2 10−03 33 21.57 5 5 422 2.47 219 219

10−05 ∗ > 3600 ∗ ∗ ∗ > 3600 ∗ ∗

4 10−03 6 16.49 5 5 5.60 211 211

10−05 23 571.60 14 1 ∗ > 3600 ∗ ∗

6 10−03 0 7.16 1 1 12.28 211 211

10−05 8 822.73 6 2 ∗ > 3600 ∗ ∗

8 10−03 0 11.60 1 1 24.31 211 211

10−05 6 1294.16 5 1 ∗ > 3600 ∗ ∗

MS

Accuracy Iterations Time, s Max. LL Final LL

10−03 204 0.25 174 173

10−05 ∗ > 3600 ∗ ∗

5.1. DISCUSSION

Based on the results of the above preliminary tests, we make some general obser-
vations.
Algorithm MS: takes excessive computation time in all Examples, except Example
2, and for lower accuracy in Examples 3 and 6. Algorithm MS generally requires
more time, iterations and list lengths than Algorithms TMS and TBMS.

GLOBAL OPTIMIZATION USING SUPER-CONVERGENT INCLUSION FUNCTIONS 435

Algorithm TMS: gives the results in reasonable computational time in all Examples
for lower accuracy, but needs excessive time in two Examples for higher accuracy
(Examples 3 and 6). The computational time increases as the order m increases.
An interesting feature is that the number of iterations remains almost the same
for m � 4, though in a few Examples there is a drop in this number when m

is increased from 2 to 4. The same holds for the space-complexity and final list
length.
Algorithm TBMS: the number of iterations decreases as the order m is increased. A
considerable reduction is obtained between m = 2 and 4. The maximum list length
also decreases considerably between m = 2 and 4, but decreases little thereafter. In
most Examples (Examples 2, 4, 5, 6), the computational time first decreases, then
increases with m, with the least time required for m = 4.

Algorithm TBMS is much faster than Algorithm TMS in all Examples, except
Example 5. The speed-up is about 3 − 4 times in Examples 1, 2, and 6, and is as
high as 10−40 in Examples 3 and 4. The speed-up gets better with accuracy. In all
Examples, Algorithm TBMS requires much smaller list lengths and much lesser
number of iterations than Algorithm TMS.

6. Concluding Remarks

In summary, the preliminary tests indicate that Algorithms TMS and TBMS are
quite effective compared to Algorithm MS, for lower accuracy problems. For higher
accuracy problems, Algorithm TBMS is the most effective one.

The best overall choice, in terms of the number of iterations, space-complexity,
and speed seems to be Algorithm TBMS with a medium Taylor order m = 4.

Acknowledgments

The authors wish to sincerely thank Drs. Berz, Makino, and Hoefkens for providing
the COSY-INFINITY software and extending a lot of help regarding the usage of
the software. The authors also wish to thank Dr. Hoefkens for carefully reading
the paper and offering various suggestions that improved the presentation of the
paper. The second author would also like to thank Dr. N. D. Jotwani of GCET for
motivating, encouraging and providing the required facilities for this work.

References

1. Berz, M. and Hoefkens, J. (2001), COSY INFINITY Version 8.1 Programming Manual, Tech-
nical Report MSUCL-1196, National Superconducting Cyclotron Laboratory, Michigan State
University, East Lansing, MI 48824.

2. Berz, M. and Hoffstatter, G. (1998), Computation and Application of Taylor Polynomials with
Interval Remainder Bounds, Reliable Computing, 4: 83–97.

3. Cargo, G.T. and Shisha, O. (1966), The Bernstein Form of a Polynomial, J. Research of NBS,
70B, 79–81.

436 P.S.V. NATARAY AND K. KOTECHA

4. Csendes, T. and Ratz, D. (1997), Subdivision Direction Selection in Interval Methods for
Global Optimization, SIAM J. Numerical Analysis, 34: 922–938.

5. Garloff, J. (1993), The Bernstein Algorithm, Interval Computations, (2), 155–168.
6. Garloff, J. and Smith, A.P. (2000), Investigation of a Subdivision Based Algorithm for Solving

Systems of Polynomial Equations, in Proc. of the 3rd World Congress of Nonlinear Analysts
(WCNA 2000), Catania, Sicily, Italy.

7. Garloff, J. and Smith, A.P. (2001), Solution of Systems of Polynomial Equations by Using
Bernstein Expansion, in Alefeld, G., Rump, S., Rohn, J. and Yamamoto, T. (eds.), Symbolic
Algebraic Methods and Verification Methods, Springer, Germany.

8. Gay, D.M. (1984), A trust region approach to linearly constrained optimization, in Griffiths,
D.F. (ed.), Numerical Analysis, Lecture Notes in Mathematics 1066, Springer, Berlin.

9. Hansen, E. (1992), Global Optimization Using Interval Analysis. Marcel Dekker, New York.
10. Hoefkens, J. (2001), Rigorous Numerical Analysis with High-Order Taylor Models. PhD thesis,

Michigan State University, East Lansing, Michigan, USA, also MSUCL-1217.
11. Ichida, K. and Fujii, Y. (1979), An Interval Arithmetic Method for Global Optimization,

Computing, 23, 85–97.
12. Kearfott, R.B. (1996), Rigorous Global Search: Continuous Problems. Kluwer Academic

Publishers, Dordrecht.
13. Kearfott, R.B. and Arazyan, A. (2000), Taylor Series Models in Deterministic Global Optimiz-

ation, in Proc. 3rd Int. Conf. and Workshop on Automatic Differentiation, June 2000.
14. Lin, Q. and Rokne, J.G. (1996), Interval Approximation of Higher Order to the Ranges of

Functions. Computers Math. Appl. 31(7), 101–109.
15. Makino, K. and Berz, M. (1996), Remainder Differential Algebras and their Applications, in

Berz, M., Bischof, C., Corliss, G. and Griewank, A. (eds.), Computational Differentiation:
Techniques, Applications and Tools, pp. 63–75. SIAM.

16. Malan, S., Milanese, M., Taragna, M. and Garloff, J. (1992), B3 Algorithm for Robust Per-
formance Analysis in Presence of Mixed Parametric and Dynamic Perturbations, in Proc. of
the 31st IEEE CDC, pp. 128–133.

17. Moore, R.E. (1966), Interval Analysis, Prentice-Hall, Englewood Cliffs, N.J.
18. Moore, R.E. (1979), Methods and Applications of Interval Analysis, SIAM, Philadelphia.
19. Moore, R.E. and Ratschek, H. (1988), Inclusion Functions and Global Optimization II,

Mathematical Programming, 41, 341–356.
20. More, J.J., Garbow, B.S. and Hillstrom, K.E. (1981), Testing Unconstrained Optimization

Software, ACM Trans. Mathematical Software, 7(1), 17–41.
21. Ratschek, H. Inclusion Functions and Global Optimization, Mathematical Programming, 33:

300–317.
22. Ratschek, H. and Rokne, J. (1984), Computer Methods for the Range of Functions, Ellis

Horwood Limited, Chichester.
23. Ratschek, H. and Rokne, J. (1988), New Computer Methods for Global Optimization, Wiley,

New York.
24. Zettler, M. and Garloff, J. (1998), Robustness Analysis of Polynomials with Polynomial

Parameter Dependency using Bernstein Expansion, IEEE Trans. on Automat. Control, 43(3),
425–431.

